博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
聊聊flink的Sliding Window
阅读量:6939 次
发布时间:2019-06-27

本文共 7132 字,大约阅读时间需要 23 分钟。

本文主要研究一下flink的Sliding Window

SlidingEventTimeWindows

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/assigners/SlidingEventTimeWindows.java

@PublicEvolvingpublic class SlidingEventTimeWindows extends WindowAssigner
{ private static final long serialVersionUID = 1L; private final long size; private final long slide; private final long offset; protected SlidingEventTimeWindows(long size, long slide, long offset) { if (offset < 0 || offset >= slide || size <= 0) { throw new IllegalArgumentException("SlidingEventTimeWindows parameters must satisfy 0 <= offset < slide and size > 0"); } this.size = size; this.slide = slide; this.offset = offset; } @Override public Collection
assignWindows(Object element, long timestamp, WindowAssignerContext context) { if (timestamp > Long.MIN_VALUE) { List
windows = new ArrayList<>((int) (size / slide)); long lastStart = TimeWindow.getWindowStartWithOffset(timestamp, offset, slide); for (long start = lastStart; start > timestamp - size; start -= slide) { windows.add(new TimeWindow(start, start + size)); } return windows; } else { throw new RuntimeException("Record has Long.MIN_VALUE timestamp (= no timestamp marker). " + "Is the time characteristic set to 'ProcessingTime', or did you forget to call " + "'DataStream.assignTimestampsAndWatermarks(...)'?"); } } public long getSize() { return size; } public long getSlide() { return slide; } @Override public Trigger
getDefaultTrigger(StreamExecutionEnvironment env) { return EventTimeTrigger.create(); } @Override public String toString() { return "SlidingEventTimeWindows(" + size + ", " + slide + ")"; } public static SlidingEventTimeWindows of(Time size, Time slide) { return new SlidingEventTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), 0); } public static SlidingEventTimeWindows of(Time size, Time slide, Time offset) { return new SlidingEventTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), offset.toMilliseconds() % slide.toMilliseconds()); } @Override public TypeSerializer
getWindowSerializer(ExecutionConfig executionConfig) { return new TimeWindow.Serializer(); } @Override public boolean isEventTime() { return true; }}
  • SlidingEventTimeWindows继承了Window,其中元素类型为Object,而窗口类型为TimeWindow;它有三个参数,一个是size,一个是slide,一个是offset,其中offset必须大于等于0,offset必须大于slide,size必须大于0
  • assignWindows方法以slide作为size通过TimeWindow.getWindowStartWithOffset(timestamp, offset, slide)计算lastStart,然后以为start + size > timestamp为循环条件,每次对start减去slide,挨个计算TimeWindow(start, start + size);getDefaultTrigger方法返回的是EventTimeTrigger;getWindowSerializer方法返回的是TimeWindow.Serializer();isEventTime返回的为true
  • SlidingEventTimeWindows提供了of静态工厂方法,可以指定size、slide及offset参数,它对于传入的offset参数转为毫秒然后与slide.toMilliseconds()取余作为最后的offset值

SlidingProcessingTimeWindows

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/windowing/assigners/SlidingProcessingTimeWindows.java

public class SlidingProcessingTimeWindows extends WindowAssigner
{ private static final long serialVersionUID = 1L; private final long size; private final long offset; private final long slide; private SlidingProcessingTimeWindows(long size, long slide, long offset) { if (offset < 0 || offset >= slide || size <= 0) { throw new IllegalArgumentException("SlidingProcessingTimeWindows parameters must satisfy 0 <= offset < slide and size > 0"); } this.size = size; this.slide = slide; this.offset = offset; } @Override public Collection
assignWindows(Object element, long timestamp, WindowAssignerContext context) { timestamp = context.getCurrentProcessingTime(); List
windows = new ArrayList<>((int) (size / slide)); long lastStart = TimeWindow.getWindowStartWithOffset(timestamp, offset, slide); for (long start = lastStart; start > timestamp - size; start -= slide) { windows.add(new TimeWindow(start, start + size)); } return windows; } public long getSize() { return size; } public long getSlide() { return slide; } @Override public Trigger
getDefaultTrigger(StreamExecutionEnvironment env) { return ProcessingTimeTrigger.create(); } @Override public String toString() { return "SlidingProcessingTimeWindows(" + size + ", " + slide + ")"; } public static SlidingProcessingTimeWindows of(Time size, Time slide) { return new SlidingProcessingTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), 0); } public static SlidingProcessingTimeWindows of(Time size, Time slide, Time offset) { return new SlidingProcessingTimeWindows(size.toMilliseconds(), slide.toMilliseconds(), offset.toMilliseconds() % slide.toMilliseconds()); } @Override public TypeSerializer
getWindowSerializer(ExecutionConfig executionConfig) { return new TimeWindow.Serializer(); } @Override public boolean isEventTime() { return false; }}
  • SlidingProcessingTimeWindows继承了Window,其中元素类型为Object,而窗口类型为TimeWindow;它有三个参数,一个是size,一个是slide,一个是offset,其中offset必须大于等于0,offset必须大于slide,size必须大于0
  • assignWindows方法以slide作为size通过TimeWindow.getWindowStartWithOffset(timestamp, offset, slide)计算lastStart(与SlidingEventTimeWindows不同的是SlidingProcessingTimeWindows的这个方法里头使用context.getCurrentProcessingTime()值重置了timestamp),然后以为start + size > timestamp为循环条件,每次对start减去slide,挨个计算TimeWindow(start, start + size);getDefaultTrigger方法返回的是ProcessingTimeTrigger;getWindowSerializer方法返回的是TimeWindow.Serializer();isEventTime返回的为false
  • SlidingEventTimeWindows提供了of静态工厂方法,可以指定size、slide及offset参数,它对于传入的offset参数转为毫秒然后与slide.toMilliseconds()取余作为最后的offset值

小结

  • flink的Sliding Window分为SlidingEventTimeWindows及SlidingProcessingTimeWindows,它们都继承了WindowAssigner,其中元素类型为Object,而窗口类型为TimeWindow;它有三个参数,一个是size,一个是slide,一个是offset,其中offset必须大于等于0,offset必须大于slide,size必须大于0
  • WindowAssigner定义了assignWindows、getDefaultTrigger、getWindowSerializer、isEventTime这几个抽象方法,同时定义了抽象静态类WindowAssignerContext;它有两个泛型,其中T为元素类型,而W为窗口类型;SlidingEventTimeWindows及SlidingProcessingTimeWindows的窗口类型为TimeWindow,它有start及end属性,其中start为inclusive,而end为exclusive,maxTimestamp返回的是end-1,它还提供了mergeWindows及getWindowStartWithOffset静态方法;前者用于合并重叠的时间窗口,后者用于获取指定timestamp、offset、windowSize的window start
  • SlidingEventTimeWindows及SlidingProcessingTimeWindows的不同在于assignWindows、getDefaultTrigger、isEventTime方法;前者assignWindows使用的是参数中的timestamp,而后者使用的是context.getCurrentProcessingTime();前者的getDefaultTrigger返回的是EventTimeTrigger,而后者返回的是ProcessingTimeTrigger;前者isEventTime方法返回的为true,而后者返回的为false

doc

转载地址:http://hzsnl.baihongyu.com/

你可能感兴趣的文章
automapper
查看>>
NDK 不能编译静态库
查看>>
null和undefined的一些区别
查看>>
计算机硬件知识整理
查看>>
第三周学习总结
查看>>
子数组最大求和(续)
查看>>
Linux 路径与命令搜寻顺序
查看>>
Grunt 入门操作指南
查看>>
Leetcode题目:Rectangle Area
查看>>
MYSQL的卸载
查看>>
js事件小记
查看>>
windows使用ssh2远程登陆ubuntu
查看>>
SAP IUT210 Master Data and Basic Functions_Col62.pdf
查看>>
32、详解Android shape的使用方法(转载)
查看>>
adb device 调试
查看>>
Java&Xml教程(四)使用DOM方式生成XML文件
查看>>
利用python实现简单随机验证码
查看>>
Java使用PipedStream管道流通信
查看>>
html5中form表单新增属性以及改良的input标签元素的种类
查看>>
ios 安卓
查看>>